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area ; 
radius of the contour area; half the width of the 
contour strip; 
radius of the elemental heat channel; half the 
width of the heat channel ; 
h/h,, ; 
hardness of the softer material; 
heat transfer coefficient; for dissimilar metals in 
contact 

K _ 2KlK2 . 
K, + K,’ 

Bessel function of order n; 
thermal conductivity; 
interface pressure; 
total heat rate; 
thermal resistance ; 
constriction thermal resistance; 
coordinate ; 
temperature.; 
average of absolute slope of surface irregularities 
tan 6 = (tan2 8, + tan2 B,)+; 
coordinate ; 
coordinate. 

Greek letters 
A, r/b ; x/b ; 
V”? eigenvalues; equation (6); 

e, r.m.s. of contacting surface, D = (0: + a$)+. 

1. INTRODUCTION 

HIM flow through a material with a non-uniform heat flux 
over its surfaces is always associated with a thermal resistance 
known as a constriction resistance. The constriction 
resistance is caused physically by the heat flow redistribution 
in the material so that the flow could conform with the non- 

uniform heat flux at the surface. This resistance is significant 
only if the characteristic length representing non-uniform 
conditions over the surface is less than or equal to the depth 
of the material where the constriction takes place. The most 
common example of the constriction resistance is the so 
called thermal contact resistance. Less common, but also 
very significant, is construction resistance in dropwise 
~onden~tion where this type of the resistance, for example, 
could account for about 80 per cent of the total resistance 
(in case of stainless steel as condensing surface [i]). The 
same phenomena could be significant for convective heat 
transfer to liquid metals, when gas bubbles are entrained on 
the heat-transfer surface [2]. 

The results of this work are confined to contact resistance 
and specifically to the macroscopic contact resistance for the 
case of non-uniform interface pressure distribution. The 
approach employed here, however, is more general and can 
be used to solve most of the problems involving constriction 
resistance. 

The major theoretical contributions in the area of 
thermal contact resistance dealt with a simple contact 13-81 
multiple contacts 13. 5. 7-101, directional effects [Il. 121 
and others. A good bibliography on the subject, including 
important experimental work and significant publications 
beyond those listed above, is reported in [ 131. 

A non-uniform pressure distribution at metallic interfaces, 
although a common occurrence in practice, was never 
considered explicitly in calculation of the contact resistance. 
Non-uniform pressure will be present in the case of a 
deviation of flatness (waviness) in one or both of the 
contacting surfaces; it could also arise due to the nature of 
loading In either case, the contact points distribution and 
the distribution of actual contact area will be non-uniform 
(in excess of the randomness effect). 

For two surfaces in nominal contact, the actual contact 
occurs only at a number of discreet contact points. If the 
apparent interface pressure is uniform, those points are 
distributed randomly over the surface. The resistance caused 
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by random distribution of contact points is usually called 
microscopic contact resistance. In the presence of waviness, 
those points would appear in clusters, or more generally, 
would be non-uniformly distributed. The resistance caused 
by clustering is called macroscopic contact resistance. 
Holm [3] and later Kragelski [14], and Clausing [6], 
proposed a formula for the calculation of the contact 
resistance for this case. The relation is based on super- 
position of the two resistances, The macroscopic resistance 
is calculated from an expression for a single big contact. 
taking the contour area which contains all the microscopic 
contacts inside it, to represent the macroscopic contact. A 
similar expression was also derived by Greenwood [lo]. 
The difference between his and Holm’s expression is only 
in the assumed macroscopic conditions over the contour 
area: the latter assumes constant temperature and the 
former, constant heat flux over the contour area Both 
formulae, in addition to some other limitations imposed by 
the physical model employed in their derivation, required 
the knowledge of the contour area. Moreover, if the contour 
area is the same as the apparent area, i.e. the contact points 
are distributed over the whole interface. the macroscopic 
resistance, according to the suggested expressions, would be 
zero regardless of the distribution details inside the contour 
area. Physically, of course, it should be present in this case, 
too. 

In this work, the concept of the contour area is eliminated 
and the macroscopic construction is related directly to non- 
uniformity of the macroscopic heat flux and specifically, to 
the pressure distribution over the interface. The result is 
incorporated into an expression which relates the overall 
contact resistance (microscopic and macroscopic) to the 
pressure distribution and surface properties. 

2. CONSTRICTION RESISTANCE DUE TO NON- 
UNIFORM HEAT FLUX DISTRIBUTION 

Consider the flow of heat through a solid (Fig. 1). At the 
surface z = 0, there is non-uniform heat-transfer coefficient 
h. Far.from the surface (large z) the temperature distribution 
is one-dimensional. Let T, represent the local surface 
temperature and T, constant temperature of the environ- 
ment, The heat rate at the surface is then 

Q =j h(& - T,)dA. (I) 
A 

The surface temperature T, would be non-uniform (higher 
at places of higher heat flux, since the gradient there would 
be higher, Fig. lb). The average flux over the heat-transfer 
surface follows from (1) as 
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FIG. 1. 

where h,, E (l/A) 1 h dA, and T, is a constant hypothetical 
surface temperature obtained at z = 0 by the extrapolation 
of the linear temperature profile existing far from the surface 
(Fig. lb.) 

Defining the total resistance from the surface to the 
environment as 

(3) 

one can write from relation (2) the following 

R = $ + R,, 
1 h 

where R, E G 
s 

G(T, - 7JdA. (4) 
B” 

A 

Equation (4) defines the constriction resistance R,. It can be 
seen from relation (4) that l/h,, is not the only resistance at 
the surface. The value of R, is always positive since T, - T, 
(see Fig. lb) is higher for higher values of h/h,,. R, goes to 
zero when T, + T, everywhere, and that would be the case 
either for uniform h or an infinite conductivity of the 
surface material in the lateral direction. 

(a) Constriction resistance in cylindrical coordinates 
Consider a heat flow through a cylinder of radius b, Fig. 1; 

at z = 0 heat transfer coefficient is given as a function of 
radius h = h(r). In order to get a first approximation for the 
constriction resistance due to the non-uniform h, it will be 
assumed that the value of the local heat flux at z = 0 is 
proportional to the local value of heat-transfer coefficient, 
i.e. 

!+?T/~z),=, h - 
QIA = h, (5) 

The temperature distribution inside the cylinder, and 
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subsequently the temperature distribution at surface 
z = 0 (T,) could be obtained by solving the Laplace differen- 
tial equation with the appropriate boundary conditions, 
including condition (S), arriving at the following expression 

m T-T=?!? i Af(l) J&J) dl 
e s 

nbk c vnJ&,) 
J,bd (6) 

*=1 

where 1 E r/b, f(A) = h~h~~ and eigenvalues v,, are the roots 
of the following equation I,@,,) = 0. 

The value for the constriction resistance now can be 
evaluated from (4) and (6), yielding the following expression 
for R, 

In the case of step distribution of h: h = Jr,, 0 < r < a and 
h = 0, a < r < b, relation (7) changes into 

For parabolic changes of h, i.e. h = h,(l - ?/a*), 
0 < r < a, h = 0, a c r c b, (7) yields the following 

(b) Constriction resistance in Cartesian geometry 
In case when the waviness is two dimensional, rather than 

circular, or when the nature of the loading is such as to 
produce the interface pressure variation only in one direction, 
one has to express the constriction resistance in the Cartesian 
coordinates. Let heat transfer coefficient h, at the surface 
z = 0, see Fig. 1, be nonuniform in x-direction only, then 
the identical procedure with the one used in the previous 
section yields the following expression for the constriction 
resistance 

where here f(2) = h(x)/h,, and i, = x/b. 
From (8) one can calculate explicitly the constriction 

resistance for a given specific distribution of h(x). 
The results for R, given in this work represents an upper 

bound for the respective non-uniformities in h, due to the 
approximation in the boundary condition at z = 0, equation 
(5). However, if a particular non-uniformity were represent- 
ing the heat flux non-uniformity, the developed relations 
would represent the exact solutions. The concept of h was 

used here only in order to approach the introduction of the 
constriction resistance through a more familiar way and 
show that l/h, is not the only resistance in the considered 
system. The concept would fail when the non~on~~ity is 
caused by non-uniform fluid temperature rather than non- 
uniform h. Therefore, more general approach would be the 
consideration of non-uniform heat flux at the surface as the 
direct cause of the constriction resistance, regardless of the 
source of the non-uniformity, (e.g. non-uniformity h, non- 
uniform lluid temperature). 

3. CONTACT RESISTANCE DUE TO NON-UNIFORM 
PRESSURE 

Contact resistance due to the microscopic constriction 
(roughness effect) was considered in details in [7]. 

With assumed Gaussian distribution of surface heights, 
the microscopic contact conductance was related to the 
interface pressure, surfaces, characteristics and the hardness 
of the softer material in contact as 

(9) 

The parameters in the above equation are introduced in 
the nomenclature. 

Relation (9), as written above, is applicable for contact in a 
vacuum. Employing an approximate, but generally accepted 
approach, one can modify expression (9) by simply adding 
to it conductance through the interfacial fluid in order to 
account for presence of the fluid. 

The macroscopic part of the contact resistance as stated 
earlier, is caused by the distribution of local microscopic 
resistance. Consequently, with a known distribution of the 
interface pressure one can, from the presented relation, 
express the total resistance as a function of the interface 
pressure distribution and other pertinent parameters. 

Proceeding in this direction one obtains from (9) and (7) 
the following relation for the total resistance [microscopic 
and macroscopic for cases where P = P(r)] : 

I = r/b, k is defined by equation (17), P,” = 2 /A PdA, and 
0 

v, are the roots of J1(v,,) = 0. 
For the cases where P = P(x), from (9) and (8) follows : 



R = 0.689 
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